Electrics 3

1. A layer of porcelain is 80 mm long, 20 mm wide and 0.7 μ m thick. Calculate its capacitance for $\varepsilon_r = 6 (\varepsilon_0 = 8.854 \cdot 10^{-12} \text{ F} \cdot \text{m}^{-1})$

- 2. A parallel plate capacitor has a capacitance of 7.0 μ F when filled with a dielectric. The area of each plate is 1.5 m² and the separation between the plates is $1.0 \cdot 10^{-5}$ m. What is the dielectric constant (relative permittivity) of the dielectric?
- 3. A parallel plate capacitor is partially filled with a dielectric material. The plates have an area of A = 0.05 m², the total separation is d = 2 mm, and the bottom half is filled with a dielectric ($\epsilon_r = 3$), while the top half is filled with air ($\epsilon_r = 1$). Calculate the total capacitance of the capacitor. Assume ($\epsilon_0 = 8.854 \cdot 10^{-12} \text{ F} \cdot \text{m}^{-1}$)
- 4 Write down the equation for a sinusoidal voltage of 50 Hz and its peak value is 20 V. Draw the corresponding voltage versus time graph.

HW: Find the capacitance of Al₂O₃ layer that is 0.5 μ m thick and it covers 2000 mm² of a square area ($\epsilon_r = 1$, $\epsilon_0 = 8.854 \cdot 10^{-12} \text{ F} \cdot \text{m}^{-1}$).